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A crude upper bound for the ensemble averaged speed of a reaction front in a fully developed
turbulent shear flow has been derived from the Kolmogorov-Petrovskii-Piskunov equation modified
by the convection term with Gaussian velocity field exhibiting long range correlations and infrared
divergence in the limit of large Reynolds number. The analysis involves a singular perturbation for
small values of the ratio of the Kolmogorov length scale to the integral length scale of turbulent
flow; the principal tools used are a functional integral technique and a renormalization procedure.
The basic physical result is that the infrared divergence of a random velocity field may lead to the

acceleration of a coarse-grained reaction front.
PACS number(s): 47.27.—i

I. INTRODUCTION

In recent years reaction-front propagation in a tur-
bulent flow has been studied in the physics literature
[1-6] due to its great practical significance as a model for
premixed turbulent combustion in the so-called flamelet
regime [7-10]. Most of these studies have been directed
towards determination of the macroscale propagation
rate of a front and its parametric dependence on the
statistical characteristics of random velocity fields. Al-
though significant progress has already been made in the
solution of this problem, especially by using the G equa-
tion describing the front propagation by the Huygens
mechanism [1,7-10], still there exist many open problems
including how to derive the formula for the propagation
rate in the long-time, large-distance limit from the first
principle.

In this paper we choose as a convenient starting
point the Kolmogorov-Petrovskii-Piskunov (KPP) equa-
tion [11] modified by the convection term with a homo-
geneous random velocity field. In general this is an ex-
tremely complex problem, therefore it seems to be rea-
sonable to set up a simple but nontrivial model for tur-
bulent velocity field. The first steps in this direction were
made by Souganidis and Majda [12] (see also [13]) who
studied large scale reaction-front dynamics with KPP
chemistry and turbulent convection involving two sep-
arated length scales for the random velocity field. They
derived renormalized effective equations for large scale
reaction-front propagation and what is more showed that
the renormalized evolution of reaction front is governed
by a variational inequality rather than a simple Huygens
principle.
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Here we adopt the model of turbulent shear flow with
arbitrary many spatial scales introduced in [14,15]. Our
primary interest is to describe the reaction front prop-
agation on length and time scales that are larger than
the integral length scale of turbulence and corresponding
turnover time scale and derive a crude upper bound for
the ensemble-averaged reaction-front position and speed.

II. KPP EQUATION
WITH RANDOM CONVECTION TERM

We  consider the following nondimensional
Kolmogorov-Petrovskii-Piskunov (KPP) equation for a
scalar field ¢(t, z,y)

o7 9p 8%p B%p

ot D5 =D (Ga 58 ) tele, ()
where the nonlinear source term c(¢) ¢ is of KPP type,
ie.,

c=¢(0) = <px‘:g[ao?cll c(p) >0, c(1)=0. (2)
Equation (1) incorporates the combined effects of ran-
dom advection, diffusion, and nonlinearity. It has been
made dimensionless by the Kolmogorov length scale n =
(v3/&)Y/4, velocity scale v, = (v&)'/%, and time scale
tr, = v/vi. Here £ is the average rate of dissipation of
turbulent energy and v is the viscosity which is also used
to nondimensionalize the diffusion coefficient.

The random velocity v(¢, z) is assumed to be a homoge-
neous Gaussian field with a zero mean and a correlation
function given by [14,15]

(w(t,z) v(t, 2'))= VZ/exp{ik(a: — ') — alk[*|t — ¢']}
k -
<o (1) vt~ 2k, (3
where 19(z) and 9o, (2) represent infrared and ultraviolet
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cutoffs correspondingly and satisfy

1/10(Z)={(1) if | z|< 2o

if[2l>21,
(4)
¢°°(z)={(1) if| z|< 2a

ifIZI> Z4.

The correlation function (3) involves three important
nondimensional parameters o, z, and €. The dynamic ex-
ponent z describes the scaling of k-dependent “turnover”
time 7(k) = 1/a| k |* with the wave number k. The pa-
rameter o is a natural characteristic of the spartial cor-
relations of the velocity field. Both z and o will play a
very important role in what follows (for further discussion
on these exponents see [14,15]). The small parameter €
is the ratio between the Kolmogorov length scale  and
the integral length scale [y, that is, € = Re~%/%, where
Re = uplp/v is the Reynolds number.

In this paper we choose to specify only the simplest
form of the initial condition, namely

1, y<o0

0(0,2,9) =x(¥) =9 4>0. (5)

More general choice of the initial scalar field ¢ can also
be made. In this case, new phenomena such as a sponta-
neous front propagation may occur [16).

III. TRAVELING WAVES AND UPPER BOUND
ON ENSEMBLE-AVERAGED REACTION
FRONT SPEED

It is well known [11] that if there is no convection
term in (1) then there exists a traveling wave solution to

(1)_(5)1
Y(t—uy) as

where 9(z) is a monotonically decreasing function such
that ¢(—o0) =1,%(c0) = 0, and u = v/4Dc is the wave
speed. Moreover, one can show that after a rescaling
t — t/e, y — y/e the wave profile (6) tends to a unit step
function x(t — uy) as € — 0.

The question naturally arises as to whether the full
nonlinear problem (1)—(5) has a traveling wave solution
in the long-time, large-distance limit, and if so, what is
the rate at which this coarse-grained wave propagates
throughout a turbulent flow. It is tempting to sup-
pose that there exists a scaling function A(e) such that
lim._,0 A(¢) = O for which the ensemble average of the

solution of (1)—(5)
) > as € — 0, (M

(e (50

t— o0, (6)
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can be viewed as a wave propagating with a certain speed.

In this paper we shall analyze the asymptotic behavior
of (7) by assuming that in the limit € — 0 the ensemble
average (7) develops a reaction front dividing the space
in two regions, so that

i (e (500 F) )

1, G(,y) >0, —co<z <0 (8)
0, G(t,y) <0, —oo <z < oo0.

It is clear from (8) that the equation G(t,y) = 0 deter-
mines the position of the front. In this paper we propose
the following formula for G(t,y):

6t =tm a9 (v (55.52)) . ©

where ¢* is a solution of (1)-(5) for the case in which
the nonlinear function ¢(y) is replaced by its maximum
value c.

The scaling function A(€) must be determined from the
requirement that the limit (9) is nontrivial. To solve this
problem we will follow the exact renormalization theory
for eddy diffusivity developed in [14,15]. The function
A(€) clearly depends on the specific choice of the expo-
nents o and z in the correlation function (3). In this
paper we consider those values of the spectral parame-
ters o and z for which the energy of velocity is divergent
in the limit of high Reynolds number, i.e., (vZ) — oo as
€ — 0. One can expect that this infrared divergence gives
rise to a nontrivial scaling behavior.

Now we wish to find an explicit expression for G(t,y).
The procedure is similar to that of Freidlin [16] (see also
[17-20]) who has given a rigorous basis for the consider-
ation of the nonlinear equations of KPP type in terms of
a functional integral technique.

Applying the scaling transformation

t z Yy
t— —, - =, - = 10
Ale) T Y= (10)

we can get an equation for (t,z,y) = ¢(£,2,¥),

¢ | € (t z) d¢*

ot + A\ e 8y
2D [ 8%p°  O%p" 1 o e
S (G + 5y ) + 3%

¢°(0,z,y) = x(y)- (11)

The initial-value problem (11) can be turned into the
functional integral equation [16]

w(tay) = Bx(w®) exp 5 [ e ot = a5(s),0(0)) )ds }, (12)
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where E denotes the expectation over the trajectories z(s) and y(s) that are the solution of the following stochastic
differential equations:

da(s) = (26:13 )1/2 dwa(s), (0) ==z,
dy(s) =§ (t /\s,"”(:))d s + (ZE;D) v dw,(s),  y(0)=y. (13)

Here w,(s) and wy(s) are the independent Wiener processes.

The major advantage of the formulation of the basic problem (1)—(5) or (11) in terms of the functional integral
equation (12) is that it allows us to obtain relatively easily an upper bound for the ensemble average of ¢€ and thereby
an upper bound for the ensemble-average speed of reaction front. By definition,

(¢ (t.2,) = [ " (t2,) Pl Do, (14)

where P[v] is the probability density functional of the random velocity field v(t,z). Since e*(¥) < e, it follows from
(12) and (14) that

(e°(t,z,y)) < <<p* (;\%2%)> ,

where
(o (55:5:%)) = [Bxtw®) exe () PEID. (15)

By using the stochastic differential equations (13), we can rewrite (15) as
t ¢ t—s x 2D\ /2 2¢2D\ */?
(v (et = /EX{“ / ( F+(5F) e )a(357) wo
X exp ( cXt ) P[v] Dv
2¢2D\ */? ct
=/Ex(y+n+( 3 ) wy (t) exp(j\—)ps(n)dn, (16)

n= g (50T () ) an

is a Gaussian variable and therefore the probability density function for it may be written as follows

1 n2

P = e exp{ - AR¥ (1)t A(e) 2 (18)
where
s—s 2D\ /2
RB) = 2t,\3 / / < ( (T) [w=(s) “wm(s')]) v(0,0)>dsds’. (19)

Since we are primarily concerned here with the effects of infrared divergence, in what follows we consider only the
case in which the transport process is dominated by the random velocity field v(¢,z) and therefore the influence of
the Brownian motion w,(t) and w,(¢) may be neglected. In this case we have

(20)

<<p=- (ﬁ%’ g)> =/X(y+n)mexp{% - 21#2“(6—)}@;,

where
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e2ve: rt ot alk|? , | k| _
= et | g — — ol k)| k|77 dkdsds’ . 21
re)= o [ [ [ew{ =S5 1a— w1} v (L) vt pl i 17 atbdsas (21)
In the limit € — 0 it is natural to seek an approximate expression of the form
t zy G(t,y)
* -z < 22
(v (A(e>’e’e)> x ep{ 0y ) (22)

which allows us to find G(t,y) and thereby the crude upper bound for the ensemble-average position of the reaction
front without directly solving the nonlinear problem (1)—(5). It follows from (20)—(22) that

3838

G(t,y)=li_%,\(e)1n<¢(m,%)>=ct_a;:m-t, (23)
where
Ro(t) = lim R.(t). (24)

Our strategy now is to find A(e) such that the limit (24) is nontrivial. There exists a wide range of values of spectral
parameters o and z for which simple diffusive scaling A(€) = € leads to the infrared divergence of the integral (21) in
the limit € — 0. Therefore the renormalization procedure is needed to render Ry(t) finite. The corresponding analysis
of such a renormalization will not be repeated here since it follows closely that described in [14,15]. The final result

may be written as follows:

RA=C [yo(| k)| k|7 dk

Ro(t) = § RE = Yt [wo(| k)| k|7 dk

(4)

(B) (25)

RC =VZ2ale=V/= [| k|77 % [1 — | k| "¢t~ (1 — e *I"t)]dk  (C)

with the anomalous scaling for three different regions (4), (B), and (C),

3—oc—z

€ 2z, 1-2<0<3-32,0<2z<1 (4)
Ale) = 4 €737, 3-32<0<3,0<2<2/3;1<0<3,2>2/3 (B) (26)
emte1, 3-32<0<1,2/3<z2<2. ©).

It is easy to check that the Brownian motion describ-
ing the molecular diffusion is negligible for the regions
(A) — (C). In the case of Kolmogorov statistics, we have
o =5/3 and z = 2/3. These values correspond to the
point lying in the region (B). It is interesting to note
that in the renormalization theory for turbulent diffu-
sion [14,15] the Kolmogorov spectrum corresponds to a
boundary between two different scaling regions.

By equating G(t,y) to zero, we find the upper bound
for the ensemble-average position y(t) and the propaga-
tion rate u(t) of the reaction front in the long-time, large-
distance limit

y(t) = (4cRo(t))*t, u(t) = % (4cRo(t))Y/? ¢.
(27)
IV. DISCUSSION

The model of turbulent shear flow (3) and (4) ap-
pears to be very useful because the problem of ensemble-

averaged reaction-front propagation for KPP equation
can be solved in such an explicit fashion. Now we can see
how the infrared divergence of random velocity field may
lead not only to new scaling behavior, but what is more
to the acceleration of the reaction front. It is clear from
(25)—(27) that the upper bound for the propagation rate
u(t) increases with time for the regions (B) and (C). In
particular, for the Kolmogorov turbulent shear flow the
upper bound may be written as

u@ =3V (5 [l keI ar)".

The phenomenon of acceleration is physically due to the
enhanced time-dependent effective turbulent diffusion in
the y-direction. It is interesting to note that the same
time dependence of the effective flame speed is observed
for the spherical flames in the regime of well developed
hydrodynamic instability [21].

In this paper attention has been focused only on the
determination of the upper bound for the ensemble-
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averaged position and propagating rate of reaction front
for the homogeneous case. New phenomena such as
jumps of the reaction front, dependence of propagation
speed on initial conditions, etc. [16], may occur when a
nonlinear term is chosen to depend on the space coordi-
nate after rescaling or in the case of velocity field vary-
ing on the integral length scale and non-homogeneous
initial conditions. These problems can also be treated
by the proposed method and we consider them in [22].
It should be noted that the preliminary work done here
might be of big practical importance to turbulent com-
bustion [13, 23-25] and therefore merits further investi-
gation for three-dimensional turbulent flow.

In summary, we have used the Kolmogorov-Petrovskii-
Piskunov (KPP) equation with a random convection
term, functional integral technique, and renormaliza-
tion procedure to derive the crude upper bound for the
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ensemble-average speed of a reaction front in a turbulent
shear flow in the limit of a large Reynolds number. We
have found that the infrared divergence of turbulent flow
may lead to the acceleration of the reaction front in the
long-time, large-distance limit.

Note added. Since this paper was submitted the au-
thor has been informed by A. Majda that he and his
co-workers have recently shown that due to intermit-
tency, there is actually a much lower upper bound on
the ensemble-averaged flame speed with a different scal-
ing exponent (unpublished work).
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